A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations
نویسندگان
چکیده
The aim of this paper is to develop an hp-version a posteriori error analysis for the time discretization of parabolic problems by the continuous Galerkin (cG) and the discontinuous Galerkin (dG) time-stepping methods, respectively. The resulting error estimators are fully explicit with respect to the local time-steps and approximation orders. Their performance within an hp-adaptive refinement procedure is illustrated with a series of numerical experiments.
منابع مشابه
Hp-finite Element Methods for Hyperbolic Problems A
This paper is devoted to the a priori and a posteriori error analysis of the hp-version of the discontinuous Galerkin nite element method for partial differential equations of hyperbolic and nearly-hyperbolic character. We consider second-order partial diierential equations with nonnegative characteristic form, a large class of equations which includes convection-dominated diiusion problems , d...
متن کاملAn hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type
We study the numerical solution of a class of parabolic integro-differential equations with weakly singular kernels. We use an hp-version discontinuous Galerkin (DG) method for the discretization in time. We derive optimal hp-version error estimates and show that exponential rates of convergence can be achieved for solutions with singular (temporal) behavior near t = 0 caused by the weakly sing...
متن کاملGoal-Oriented Error Estimation for the Fractional Step Theta Scheme
In this work, we derive a goal-oriented a posteriori error estimator for the error due to time-discretization of nonlinear parabolic partial differential equations by the fractional step theta method. This time-stepping scheme is assembled by three steps of the general theta method, that also unifies simple schemes like forward and backward Euler as well as the Crank–Nicolson method. Further, b...
متن کاملReduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; Application to real-time Bayesian parameter estimation
In this chapter we consider reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingredients are Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold” — dimension reduction; efficient and effective Greedy and POD-...
متن کاملA review of some a posteriori error estimates for adaptive finite element methods
Recently, the adaptive finite element methods have gained a very important position among numerical procedures for solving ordinary as well as partial differential equations arising from various technical applications. While the classical a posteriori error estimates are oriented to the use in h-methods the contemporary higher order hp-methods usually require new approaches in a posteriori erro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 115 شماره
صفحات -
تاریخ انتشار 2010